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Abstract
Dimensional reduction occurs when the critical behaviour of one system can be
related to that of another system in a lower dimension. We show that this occurs
for directed branched polymers (DBP) by giving an exact relationship between
DBP models in D + 1 dimensions and repulsive gases at negative activity in
D dimensions. This implies relations between exponents of the two models:
γ (D + 1) = α(D) (the exponent describing the singularity of the pressure),
and ν⊥(D + 1) = ν(D) (the correlation length exponent of the repulsive gas).
It also leads to the relation θ(D + 1) = 1 + σ(D), where σ(D) is the Yang–Lee
edge exponent. We derive exact expressions for the number of DBP of size N
in two dimensions.

PACS numbers: 64.60.Fr, 04.20.Jb, 04.60.Nc, 05.20.Jj

The phenomenon of dimensional reduction has attracted considerable attention over the years.
The first example was the controversial random field Ising model (RFIM), whose critical
behaviour was conjectured to be the same as the pure Ising model in two fewer dimensions
[1]. A proof of long-range order for the RFIM in three dimensions [2, 3] showed that
dimensional reduction fails there, and recent work [4–6] has elucidated what goes wrong.
A second example is the Parisi–Sourlas reduction of branched polymers (BP) in D + 2
dimensions to the Yang–Lee edge or i ϕ3 field theory in D dimensions [7]. This was recently
confirmed with the discovery of an exact relationship between BP models and repulsive gases
at negative activity in two fewer dimensions [8, 9]. The failure of the heuristic arguments for
dimensional reduction in the RFIM underscores the importance of having an exact result. In
this letter we give a third example, in which directed branched polymers (DBP) reduce to the
repulsive gas at negative activity in one fewer dimension.

We consider directed branched polymers as self-avoiding tree graphs embedded in Z
D+1

or R
D+1 so that every vertex can be reached from the root at 0 by a sequence of links which

move forward with respect to a preferred direction (see figure 1). Let dN denote the number
of DBP with N vertices, and let ZDBP(z) = ∑

N dNzN . We prove the identity

ρHC(z) = −ZDBP(−z) (1)
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Figure 1. A directed branched polymer in Z
2.

which relates the DBP generating function to the density of an associated repulsive gas model.
In contrast to the undirected case, the reduction in dimension is one. If we define α from the
singularity ρHC ∼ (z − zc)

1−α of the hard-core gas at the negative activity critical point, and
γ from the singularity ZDBP ∼ (z − z̃c)

1−γ , then we find z̃c = −zc and γ (D + 1) = α(D).
Define an exponent θ from the asymptotic behaviour dN ∼ z−N

c N−θ . Then θ = 2−γ . Noting
that the Yang–Lee edge exponent σ [10] can be identified with 1 − α [11, 12], we obtain the
relation

θ(D + 1) = 1 + σ(D). (2)

In one and two dimensions, σ can be determined from the exact values α(1) = 3
2 [11], α(2) = 7

6
(the latter follows from the solution to the hard-hexagon model [13] at the negative activity
critical point, see [14, 15]; alternatively from [16], assuming the model is in the Yang–Lee
class.) Hence θ(2) = 1

2 and θ(3) = 5
6 . We also obtain identities relating DBP correlations with

repulsive gas correlations, which imply that the DBP exponent for the transverse correlation
length ν⊥(D + 1) equals the repulsive gas exponent ν(D).

The related problem of directed lattice animals (DA) has been studied extensively
[14, 15, 17–27]. It is generally believed that the loop-free condition does not affect the
critical behaviour, so that both systems should have the same exponents. For DA, there
are exact results in two dimensions (see [22–24], the review [25], and references therein)
and in three dimensions [14]. Also, in any dimension, models of DA have been related to
dynamical models of hard-core lattice gases [14] (see also [28], which connects Lorentzian
semi-random lattices with DA and gives an alternative derivation of Dhar’s equivalence).
They have also been related to the critical dynamics of the Ising model in an imaginary field
[17, 18]. As a result, the identity (2) is believed to hold for DA [17–19], and the values in
D = 2, 3 should be the same as those given above for DBP.

We consider a class of DBP models where the vertices yk = (tk, xk) have a time component
tk ∈ R+ and a space component xk ∈ S, where S is either R

D or Z
D . If a lattice model is

desired, the time component can be discretized by taking limits (see examples below). Let T
be a tree graph on {1, . . . , N}, and let yk be the position of the kth vertex. Fix the vertex 1 as
the root, with y1 = 0. For each pair (i, j) ≡ ij , define

yij := (tij , xij ) := (|ti − tj |, xi − xj ). (3)

Each link of T connects a vertex j to a vertex i, where i is one step closer than j to the root
along T. As we are considering directed BP, we require tj � ti .
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The weight associated with each DBP configuration depends on a linking weight
V (y) = V (t, x) and a repulsive weight U(y) = U(t, x) = U(t,−x). The generating
function for (rooted) DBP is written as

ZDBP(z) =
∞∑

N=1

zN

(N − 1)!

∑
T

∫
(R+×S)N−1

∏
ji∈T

[dyjiV (yji)]
∏
ji /∈T

U(yji). (4)

Here each pair {i, j} appears exactly once, either in
∏

ji∈T or in
∏

ji /∈T . We assume
U(t, x) → 1 if either t or x tends to infinity (repulsion vanishes at infinite distance). In
order to get dimensional reduction, we require

V (t, x) = U ′(t, x) (5)

where prime denotes the t-derivative. For positive weights, we require that U and U ′ = V are
positive. Also, V needs to be an integrable function of y for (4) to be well defined.

Our main result relates ZDBP to the density of a repulsive gas in the D-dimensional space
S. Let � ⊂ S. Using the grand canonical partition function

ZHC(z) =
∞∑

N=0

zN

N !

∫
�N

N∏
i=1

dxi

∏
1�i<j�N

U(0, xij ) (6)

we can define the density

ρHC(z) = z
d

dz

[
lim
�↗S

1

|�| log ZHC(z)

]
. (7)

Theorem 1. For all z such that the right-hand side converges absolutely,

ρHC(z) = −ZDBP(−z). (8)

We now give some continuous and discrete examples of models of type (4). If one takes
U(t, x) = ϑ(t + |x|−1), where ϑ is the usual step function, then V (t, x) = δ(t + |x|−1). One
obtains a DBP model where each monomer is a hard diamond (when |x| = ∑D

α=1 |xα|) or a
hard double-cone (when |x|2 = ∑D

α=1 x2
α), obtained as {(t, x) : |t | + |x| < 1}. Each monomer

is distributed uniformly in contact with the positive surface of the monomer it is linked to
(subject to the constraint of nonoverlap with other monomers). One can also consider a hard-
sphere model by taking U(t, x) = ϑ(t2 + |x|2 − 1). Then the monomer is still distributed
uniformly in x, which means angles close to the preferred direction are favoured.

Theorem 1 equates the generating functions of these (D + 1)-dimensional DBP models
to the density of the hard-sphere gas in D dimensions, at negative activity. For D = 1, the
pressure of the hard-rod gas is computable; it is

p(z) = LambertW(z) = −T (−z) (9)

where T (z) = ∑∞
N=1 zNNN−1/N! is the tree generating function [9]. Hence

ZDBP(z) = −ρHC(−z) =
∞∑

N=1

zNNN

N !
. (10)

This gives a simple expression for the volume available to DBP of size N; this can be checked
with some effort for small values of N.

A natural class of lattice examples can be obtained by taking U(t, x) = 1− I (x)ϑ(1− t),
where I (x) is an indicator function of a set of ‘neighbours’ in the lattice, such as {x : |x| � 1}.
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Since V (t, x) = I (x)δ(t − 1), the set determines which sites a link can jump to; t always
increases by 1. Figure 1 shows a representative DBP for this model in two dimensions. On
the gas side of identity (1), t is set to 0, and we obtain various nearest-neighbour exclusion
models, including the hard-hexagon model in D = 2. When counting allowed DBP, it is
important to include the factors

∏
ji /∈T U(yji), which enforce the nearest-neighbour exclusion

for monomers on the same level (same value of t). Also, if a monomer at level t has n
neighbours at level t − 1 in the polymer, the associated U-factors can be written as ϑn−1(0),
which should be interpreted as 1

n
= ∫

ϑn−1 dϑ (as can be seen by approximating ϑ with a
smooth function and integrating over t). Monomers in levels more distant than this do not
interact (similar conditions occur in theorem III.2 of [29]; in fact (13) can be used to give an
alternate proof of that identity).

Theorem 1 equates the generating functions of these models with the nearest-neighbour
exclusion models in D dimensions associated with the weights U(0, x) = 1 − I (x). For the
hard-hexagon model in D = 2, there is an exact solution for the pressure [13]. In D = 1 we
have a dimer model, for which the pressure is known, see [11, equation 2.16]:

p(z) = ln
(

1
2 + 1

2

√
1 + 4z

)
. (11)

Thus the generating function is

ZDBP(z) = −z
d

dz
p(−z) =

∞∑
N=1

[2N − 1]!!2N−1zN

N !
(12)

which enumerates the number of DBP with N monomers.
In order to prove theorem 1 we derive an identity which encapsulates the effect of

interpolating in the t variables. Let f (t) be a smooth function of {ti}, {tij } which approaches
0 when any of the t tends to infinity. Then a forest-root formula holds:

f (0) =
∑
(F,R)

∫
R

N
+

∏
r∈R

[−dtr ]
∏
ji∈F

[−d(tj − ti)]f
(F,R)(t). (13)

Here R is called the set of roots and is any subset of {1, . . . , N}. We sum F over the
set of all forests or loop-free graphs on {1, . . . , N} with the property that each connected
component or tree of F contains exactly one root. Each link in a tree of F connects a vertex
j to a vertex i which is one step closer to the root for that tree. The integration region is
{tr � 0, r ∈ R and tj � ti , j i ∈ F }.

For N = 1, (13) reduces to f (0) = − ∫ ∞
0 f ′(t) dt . For N = 2, consider f (t1, t2, t12) and

use subscripts 1, 2, 12 to denote partial derivatives. Then

f (0) = −
∫ ∞

0
ds(f1(s, s, 0) + f2(s, s, 0)). (14)

Apply the N = 1 formula to the f1 term, integrating with respect to x2 − x1, and to the f2

term, integrating with respect to x1 − x2. The result is

f (0) =
∫ ∞

0
dt1

∫ ∞

0
d(t2 − t1)(f1,2 + f1,12) + (1 ←→ 2) (15)

since dt12
dt2

= 1 for t2 > t1, and d t12
dt1

= 1 for t1 > t2. The two f1,2 terms combine to form∫
R

2
+

dt1 dt2f1,2, which is the term R = {1, 2} of (13). The other two integrals are the terms
R = {1}, {2}.

One can prove the general case by induction on N. Begin as above with

f (0) = −
∫ ∞

0
ds

N∑
k=1

fk(s, . . . , s, 0, . . . , 0) (16)
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where the integral is along the diagonal, t1 = t2 = · · · = tN . Consider one of these terms, say
k = N , and apply (13) in the variables t̃ i = ti − tN , i = 1, . . . , N − 1, keeping tN = s fixed:

fN(tN , . . . , tN , 0, . . . , 0) =
∑
(F̃ ,R̃)

∫
R

N−1
+

∏
r∈R̃

[−dt̃ r ]
∏
ji∈F̃

[−d(t̃ j − t̃ i )]f
(F̃ ,R̃)
N (t). (17)

Note that when computing the derivative of fN with respect to t̃ r , there will be a term fN,r and
also a term fN,rN (coming from the dependence on trN = tr − tN = t̃ r ). Thus each (F̃ , R̃)

on {1, . . . , N − 1} gives rise to 2|R̃| terms, each of which can be assigned a unique (F,R)

on {1, . . . , N}. R consists of N, together with each r ∈ R̃ with an fN,r term. F consists of
F̃ , together with rN, r ∈ R̃ when r gives rise to an fN,rN term. Observe that each root in R̃

ceases to be a root in R if it is connected by a bond rN in F. We obtain in this way all (F,R)

with N ∈ R, and each satisfies the condition that each tree of F contains exactly one root. As
a result,

f (0) =
N∑

k=1

∑
(F,R):k∈R

∫
R

N
+

[−dtk]
∏

i∈R\{k}
[−d(ti − tk)]

∏
ji∈F

[−d(tj − ti)]f
(F,R)(t). (18)

It is evident that if we take the term (F,R) of (13), and consider the subset of the integration
region for which tk = minr∈R tr , we obtain the term k, (F,R) of (18).

The forest-root formula (13) is the key to dimensional reduction; in fact a two-dimensional
version of (13) was used in [8, 9] to derive a repulsive gas mapping for ordinary (isotropic)
BP. The argument proceeds by applying (13) to

f (t) = g(t1/ε)

N∏
i=2

g(εti)
∏

1�i<j�N

U(tij , xij ) (19)

where g is any smooth function which decreases to 0 and satisfies g(0) = 1. Thus,

ρHC(z) = lim
�↗S

lim
ε↘0

1

ZHC(z)

∞∑
N=1

zN

N !

∫ N∏
i=1

dxif (0)

= lim
�↗S

lim
ε↘0

1

ZHC(z)

∞∑
N=1

zN

N !

∑
(F,R)

∫
(R+×�)N

∏
r∈R

[−dyr ]
∏
ji∈F

[−dyji]f
(F,R)(t). (20)

For each ji ∈ F,U(yji) is differentiated and becomes the linking weight V (yji). For each
r ∈ R, a g is differentiated:

f (F,R)(t) =
∏
r∈R

g′ ∏
i /∈R

g
∏
ji∈F

V (yji)
∏
ji /∈F

U(yji). (21)

Note that the distribution of tr for an n-vertex tree is essentially −(g(εtr )
n)′dtr , which is a very

spread-out probability measure. One finds that due to the large separation in the t direction,
all the interaction terms U between different trees are equal to 1 (up to terms which vanish as
ε → 0). This means that the sums/integrals associated with each tree are independent of the
others, and all the trees of F decouple. One tree has its root fixed at 0 by a factor −(g(t1/ε))

′,
which converges to δ(t1). The others cancel with the normalization ZHC(z), so that (20)
reduces to (4), with an additional −1 for each link of the tree. Thus ρHC(z) = −ZDBP(−z),
which is theorem 1.

One can prove identities relating n-point functions of the repulsive gas to n-point functions
of DBP. If one takes the derivative of (1) with respect to a source at x, one obtains for the
2-point correlation functions

GHC(0, x; z) = −
∫ ∞

0
GDBP(0, y;−z) dt (22)
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where y = (t, x) ∈ R+ × R
D . Hence the transverse correlation length exponent ν⊥(D + 1) of

the repulsive gas must be the same as ν(D). The value ν(1) = 1
2 can be computed directly,

and the value ν(2) = 5
12 follows from hyperscaling (Dν = 2 − α) (or equivalently from

Dν⊥ = 2 − α [30, equation 28]) with α = 7
6 as indicated above. One can also consider

unrooted DBP (divide each term in (4) by N) and relate them to the pressure of the associated
repulsive gas.

In conclusion, we have demonstrated the underlying mechanism of dimensional reduction
for directed branched polymers. In the process, some lattice and continuum models of DBP
are solved exactly in two and three dimensions by reference to repulsive gases in one lower
dimension.
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[4] Brézin E and De Dominicis C 1998 Europhys. Lett. 44 13 (Preprint cond-mat/9804266)
[5] Feldman D E 2002 Phys. Rev. Lett. 88 177202 (Preprint cond-mat/0010012)
[6] Parisi G and Sourlas N 2002 Phys. Rev. Lett. 89 257204 (Preprint cond-mat/0207415)
[7] Parisi G and Sourlas N 1981 Phys. Rev. Lett. 46 871
[8] Brydges D C and Imbrie J Z 2003 Ann. Math. 158 1019 (Preprint math-ph/0107005)
[9] Brydges D C and Imbrie J Z 2003 J. Stat. Phys. 110 503 (Preprint math-ph/0203055)

[10] Fisher M E 1978 Phys. Rev. Lett. 40 1610
[11] Lai S N and Fisher M E 1995 J. Chem. Phys. 103 8144
[12] Park Y and Fisher M E 1999 Phys. Rev. E 60 6323 (Preprint cond-mat/9907429)
[13] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[14] Dhar D 1983 Phys. Rev. Lett. 51 853
[15] Baram A and Luban M 1987 Phys. Rev. A 36 760
[16] Cardy J L 1985 Phys. Rev. Lett. 54 1354
[17] Cardy J L 1982 J. Phys. A: Math. Gen. 15 L593
[18] Breuer N and Janssen H K 1982 Z. Phys. B 48 347
[19] Stanley H E, Redner S and Yang Z R 1982 J. Phys. A: Math. Gen. 15 L569
[20] Day A R and Lubensky T C 1982 J. Phys. A: Math. Gen. 15 L285
[21] Redner S and Yang Z R 1982 J. Phys. A: Math. Gen. 15 L177
[22] Dhar D 1982 Phys. Rev. Lett. 49 959
[23] Chang S C and Shrock R 2001 Physica A 296 131 (Preprint cond-mat/0005232)
[24] Sumedha and Dhar D 2003 J. Phys. A: Math. Gen. 36 3701 (Preprint cond-mat/0303450)
[25] Bousquet-Mélou M 1998 Discrete Math. 180 73
[26] van Rensburg E J J and Rechnitzer A 2001 J. Stat. Phys. 105 49
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